Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control.

نویسندگان

  • Caleb B McDonald
  • Kenneth L Seldeen
  • Brian J Deegan
  • Vikas Bhat
  • Amjad Farooq
چکیده

Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor--a key signaling molecule involved in the activation of Ras GTPase--to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivalent binding drives the formation of the Grb2-Gab1 signaling complex in a noncooperative manner.

Although the growth factor receptor binder 2 (Grb2)-Grb2-associated binder (Gab)1 macromolecular complex mediates a multitude of cellular signaling cascades, the molecular basis of its assembly has hitherto remained largely elusive. Herein, using an array of biophysical techniques, we show that, whereas Grb2 exists in a monomer-dimer equilibrium, the proline-rich (PR) domain of Gab1 is a monome...

متن کامل

Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis

BACKGROUND The mammalian Grb2 adaptor protein binds pTyr-X-Asn motifs through its SH2 domain, and engages downstream targets such as Sos1 and Gab1 through its SH3 domains. Grb2 thereby couples receptor tyrosine kinases to the Ras-MAP kinase pathway, and potentially to phosphatidylinositol (PI) 3'-kinase. By creating a null (Delta) allele of mouse Grb2, we have shown that Grb2 is required for en...

متن کامل

Characterization of GRB2 and SOS1 binding downstream of TCR activation

Despite their essential role in protection, T cells can be dangerous if unregulated. Dysfunctional T cell activity has been implicated in numerous diseases, including the failure of organ transplants, allergic reactions, multiple sclerosis, and coronary artery disease. Signal transduction pathways activated by the T cell receptor (TCR) are good targets for the development of therapies. However,...

متن کامل

Coupling of Gab1 to C-Met, Grb2, and Shp2 Mediates Biological Responses

Gab1 is a substrate of the receptor tyrosine kinase c-Met and involved in c-Met-specific branching morphogenesis. It associates directly with c-Met via the c-Met-binding domain, which is not related to known phosphotyrosine-binding domains. In addition, Gab1 is engaged in a constitutive complex with the adaptor protein Grb2. We have now mapped the c-Met and Grb2 interaction sites using reverse ...

متن کامل

Quantifying Intramolecular Binding in Multivalent Interactions: A Structure-Based Synergistic Study on Grb2-Sos1 Complex

Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 494 2  شماره 

صفحات  -

تاریخ انتشار 2010